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Splitting of Vector Bundles on Pn

Let S = k[x0, . . . , xn] be a polynomial ring.
Let E be a vector bundle of rank r over Pn = Proj S.

Fact: vector bundles on Pn ⇐⇒ projective modules over S.

Classical question
When does E split as a direct sum of line bundles?

- Grothendieck: any vector bundle on P1 splits as ⊕r
i=1OP1(di).

- There are indecomposable bundles of rank n − 1 on Pn, n≥3.

Notation:
- OX is the structure sheaf on X ;
- ΩX is the cotangent sheaf on X ;
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Constructing Indecomposable Vector Bundles on Pn

Classical problem
Construct indecomposable vector bundles of low rank on Pn.

Definition

A monad is a complex 0← A α←− B β←− C ← 0 of vector bundles
that is exact except at B, defining a vector bundle E = kerα/ imβ.

- Horrocks–Mumford: an indecomposable rank 2 bundle on P4 from

O5
P4←

(
Ω2
P4(2)

)2 ← OP4(−1)5.

- Existence of such bundles on Pn, n ≥ 5 is unknown.
- Physics: an instanton bundle is the cohomology of a linear monad

OP3(1)n ← O2n+2
P3 ← OP3(−1)n.

4 / 20
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A Splitting Criterion for Pn

Theorem (Horrocks’ splitting criterion)
If for all twists d ∈ Z and i ≥ 0, Hi(Pn,E ⊗OPn(d)) is equal to
the cohomology of positive sums of line bundles, then E splits.

“If it walks like a duck and talks like a duck, then it’s a duck.”

- Computable using Tate resolutions over the exterior algebra.
- Idea: construct the Beilinson monad for E with terms given by:

Bi =
⊕
j∈Z

Hj−i (Pn,E ⊗OPn(−j))⊗ Ωj
Pn(j).

Motivation
For which toric varieties can we prove a similar splitting criterion?
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Toric Varieties

Let σ ⊂ N ∼= Zn be a cone
and σ∨ ⊂ M ⊗Z R be its dual cone,
where M = HomZ(N,Z).

Global Coordinates
The gluing data for a toric variety comes from a fan ∆ of cones.

Construction: for each σ ∈ ∆ we have
- a commutative semi-group Sσ = σ∨ ∩M, and
- an open affine toric subvariety Uσ = SpecC[Sσ].
Now glue Uσ according to the fan.

Definition
A toric variety is smooth (resp. simplicial) if every cone is generated
by a subset of an Z-basis (resp. R-basis) of N (resp. N ⊗Z R).

- In particular, smooth implies simplicial.
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Simplicial Toric Varieties

Let S be the total coordinate ring of a toric variety X .

Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)
Every coherent sheaf on a simplicial toric variety X corresponds
to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!
- Monomial orderings
- Gröbner basis algorithms
- Syzygies and free resolutions

Caution: saturation on S is with respect to an irrelevant ideal B.

8 / 20



Motivation Toric Varieties Derived Categories Applications

Simplicial Toric Varieties

Let S be the total coordinate ring of a toric variety X .
Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)
Every coherent sheaf on a simplicial toric variety X corresponds
to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!
- Monomial orderings
- Gröbner basis algorithms
- Syzygies and free resolutions

Caution: saturation on S is with respect to an irrelevant ideal B.

8 / 20



Motivation Toric Varieties Derived Categories Applications

Simplicial Toric Varieties

Let S be the total coordinate ring of a toric variety X .
Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)
Every coherent sheaf on a simplicial toric variety X corresponds
to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!
- Monomial orderings
- Gröbner basis algorithms
- Syzygies and free resolutions

Caution: saturation on S is with respect to an irrelevant ideal B.

8 / 20



Motivation Toric Varieties Derived Categories Applications

Simplicial Toric Varieties

Let S be the total coordinate ring of a toric variety X .
Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)
Every coherent sheaf on a simplicial toric variety X corresponds
to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!
- Monomial orderings
- Gröbner basis algorithms
- Syzygies and free resolutions

Caution: saturation on S is with respect to an irrelevant ideal B.

8 / 20



Motivation Toric Varieties Derived Categories Applications

Simplicial Toric Varieties

Let S be the total coordinate ring of a toric variety X .
Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)
Every coherent sheaf on a simplicial toric variety X corresponds
to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!
- Monomial orderings
- Gröbner basis algorithms
- Syzygies and free resolutions

Caution: saturation on S is with respect to an irrelevant ideal B.

8 / 20



Motivation Toric Varieties Derived Categories Applications

Section 3

Derived Categories
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Monads We Know & Love!

If we consider longer monads, we can also represent all sheaves.

- Beilinson monads: Bi =
⊕
j∈Z

Hj−i (Pn,E ⊗O(−j))⊗ Ωj(j)

- Virtual resolutions: Vi =
⊕
j∈Z

Hj−i (Pn,E ⊗ Ωj(j)
)
⊗O(−j)

Proposition (Beilinson 1978)

There exit two full strong exceptional collections for Db(Pn):
OPn , OPn(1), . . . , OPn(n) and OPn , ΩPn(1), . . . , Ωn

Pn(n)

Question
What is the machinery for translating between the monads above?
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Fourier–Mukai Transforms

Consider the diagram: X × X

X X
π1 π2

Let K be a resolution of the diagonal ∆ = im(X → X × X)

K : 0← S∆ ← K0 ← K1 ← · · ·

Definition (Huybrechts 2006)
The Fourier–Mukai transform with kernel K is the functor

ΦK : Db(X)→ Db(X),

given by E 7→ π1∗(π
∗
2E ⊗K).

- identity functor on Db(X) produces quasi-isomorphisms.
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Section 4

Applications
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Virtual Resolutions for X = Pn

Let Pn= Pn1× · · · × Pnr be a product of r projective spaces.
Let M =

⊕
d Md be a f.g. Zr -graded module over the Cox ring S.

Fact: coherent sheaves on Pn ⇐⇒ f.g. graded modules over S.

Observation
Minimal free resolutions on Pn can be longer than dimension of Pn .

Hilbert’s Syzygy Theorem on S does not reflect the geometry of Pn !

But a virtual Hilbert Syzygy Theorem for Pn still holds:

Theorem (Berkesch, Erman, and Smith 2020)
A virtual resolution of length ≤ dimPn exists for graded modules.

13 / 20



Motivation Toric Varieties Derived Categories Applications

Virtual Resolutions for X = Pn

Let Pn= Pn1× · · · × Pnr be a product of r projective spaces.
Let M =

⊕
d Md be a f.g. Zr -graded module over the Cox ring S.

Fact: coherent sheaves on Pn ⇐⇒ f.g. graded modules over S.

Observation
Minimal free resolutions on Pn can be longer than dimension of Pn .

Hilbert’s Syzygy Theorem on S does not reflect the geometry of Pn !

But a virtual Hilbert Syzygy Theorem for Pn still holds:

Theorem (Berkesch, Erman, and Smith 2020)
A virtual resolution of length ≤ dimPn exists for graded modules.

13 / 20



Motivation Toric Varieties Derived Categories Applications

Virtual Resolutions for X = Pn

Let Pn= Pn1× · · · × Pnr be a product of r projective spaces.
Let M =

⊕
d Md be a f.g. Zr -graded module over the Cox ring S.

Fact: coherent sheaves on Pn ⇐⇒ f.g. graded modules over S.

Observation
Minimal free resolutions on Pn can be longer than dimension of Pn .

Hilbert’s Syzygy Theorem on S does not reflect the geometry of Pn !

But a virtual Hilbert Syzygy Theorem for Pn still holds:

Theorem (Berkesch, Erman, and Smith 2020)
A virtual resolution of length ≤ dimPn exists for graded modules.

13 / 20



Motivation Toric Varieties Derived Categories Applications

Virtual Resolutions for X = Pn

Let Pn= Pn1× · · · × Pnr be a product of r projective spaces.
Let M =

⊕
d Md be a f.g. Zr -graded module over the Cox ring S.

Fact: coherent sheaves on Pn ⇐⇒ f.g. graded modules over S.

Observation
Minimal free resolutions on Pn can be longer than dimension of Pn .

Hilbert’s Syzygy Theorem on S does not reflect the geometry of Pn !

But a virtual Hilbert Syzygy Theorem for Pn still holds:

Theorem (Berkesch, Erman, and Smith 2020)
A virtual resolution of length ≤ dimPn exists for graded modules.

13 / 20



Motivation Toric Varieties Derived Categories Applications

Beilinson’s Resolution of Diagonal for X = Pn

Roadmap for constructing a short virtual resolution on X = Pn :

1 compute a Koszul resolution of the diagonal in X × X given by

K : · · · →
∧

|ei |=k

(
OX (−ei)� Ωei

X (ei)
)
→ · · · → OX×X → O∆ → 0

2 find d ∈ Pic(X) so Ωu(u + d)⊗F has no higher cohomology;
3 apply the Fourier–Mukai functor with kernel K on M̃(d);
4 apply the global sections functor on the resulting complex.

Problem
What conditions on the exceptional collections of a toric variety
guarantee that a virtual Hilbert Syzygy Theorem holds?

“Variations on the theme of Beilinson’s resolution of the diagonal.”

14 / 20
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3 apply the Fourier–Mukai functor with kernel K on M̃(d);
4 apply the global sections functor on the resulting complex.

Problem
What conditions on the exceptional collections of a toric variety
guarantee that a virtual Hilbert Syzygy Theorem holds?

“Variations on the theme of Beilinson’s resolution of the diagonal.”
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Regularity on Pn from a Derived Perspective

Let S = k[x0, . . . , xn] and B = (x0, . . . , xn) with deg xi = 1.
Let M = M≥m(m) be an 0-regular S-module.

Let F• be the minimal free resolution of M,
and G• be the virtual resolution of M as in BES20.

Remark
- The (a, j)-th Betti number of F• is given by dimTorj(M, k)a.
- The (a, j)-th Betti number of G• is given by ha−j(M̃ ⊗ Ωa(a)

)
.

We can improve a result of Eisenbud and Goto:

Theorem

G• ∼= F• and ha−j
(

M̃ ⊗ Ωa(a)
)
= dimTorj(M, k)a
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Regularity on X and New Results

Let X be a “nice” toric variety, such as:
- a projective space Pn, or product of projective spaces Pn;
- a Hirzebruch surface Fn;
- the del Pezzo surface dP6.

Conjecture
There is a “Beilinson-type” resolution of the diagonal K for X .

Let M = M≥m(m) be an “S-regular” S-module.
Let F• be the minimal free resolution of M,
and G• be the virtual resolution of M constructed via ΦK.

Conjecture

G• ∼= F• and h|a|−j
(

M̃ ⊗ Ωa(a)
)
= dimTorj(M, k)a
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Regularity and Linear Resolutions for X = Pn

Let S = k[x0, . . . , xn] and m = (x0, . . . , xn) with deg xi = 1.
Let M =

⊕
d Md be a f.g. Z-graded S-module.

Proposition (Eisenbud and Goto 1984)
The following are equivalent to M being m-regular:

1 i-th syzygy of M is generated in degrees ≤ m + i
2 H i

m(M)d = 0 for d ≥ m + 1− i and all i = 0, 1, . . .
3 the truncation M≥m admits a linear free resolution.

Recall that a free resolution F• of M≥m is linear if:
M≥m is generated in one degree only and
F• has only linear elements in its differential matrices

Equivalent to the Betti table being concentrated in one line.
18 / 20
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Multigraded Regularity for X = Pn

Let X = Pn= Pn1× · · · × Pnr be a product of r projective spaces.
Let S = Cox(X) with B the Zr -graded irrelevant ideal of X .
Let M =

⊕
d Md be a f.g. Zr -graded S-module.

Definition (Maclagan and Smith 2004)
An S-module M on a product of projective spaces is m-regular if

H i
B(M)d = 0 for d ∈ m +Nr [1− i] and all i = 0, 1, . . . .

Then regM = {m ∈ Zr : M is m-regular}.

Notation:

Nr [1− i] =
⋃
{Nr shifted northwest by 1− i steps}.

19 / 20
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Multigraded Regularity for X = P1× P2

Definition (Maclagan and Smith 2004)
m ∈ regM ⇐⇒ H i

B(M)d = 0 for d ∈ m +N2[1− i] and all i ≥ 0.

Notation: N2[1− i] =
⋃
{N2 shifted northwest by 1− i steps}.

Example for Picard rank = 2

- Implemented in the M2 package VirtualResolutions using Tate resolutions
joint with Ayah Almousa, Juliette Bruce, and Mike Loper.

20 / 20


	Motivation
	Toric Varieties
	Derived Categories
	Applications
	References


