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Motivation
Splitting of Vector Bundles on P”

Let S = Kk[xo, ..., xn] be a polynomial ring.
Let E be a vector bundle of rank r over P" = Proj S.

Fact: vector bundles on P” <= projective modules over S.

Classical question
When does E split as a direct sum of line bundles?

- Grothendieck: any vector bundle on P! splits as ©/_; Opa(d;).
- There are indecomposable bundles of rank n — 1 on IP", n>3.

Notation:
- Ox is the structure sheaf on X;
- Qx is the cotangent sheaf on X;
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Constructing Indecomposable Vector Bundles on P”

Classical problem
Construct indecomposable vector bundles of low rank on IP”.

Definition

A monad is a complex 0 + A <~ B <ﬁ C < 0 of vector bundles
that is exact except at B, defining a vector bundle E = ker o/ im 3.

- Horrocks—Mumford: an indecomposable rank 2 bundle on P* from
03, (Q24(2))° < Ops(—1)°.

- Existence of such bundles on IP”, n > 5 is unknown.
- Physics: an instanton bundle is the cohomology of a linear monad

Ops(1)" + 022 « Opsy(—1)".
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Theorem (Horrocks' splitting criterion)

If for all twists d € Z and i > 0, H'(P", E ® Ops(d)) is equal to
the cohomology of positive sums of line bundles, then E splits.

5/20



A Splitting Criterion for P"

Theorem (Horrocks' splitting criterion)

If for all twists d € Z and i > 0, H (P", E ® Opx(d)) is equal to
the cohomology of positive sums of line bundles, then E splits.

“If it walks like a duck and talks like a duck, then it's a duck.”

5/20



A Splitting Criterion for P"

Theorem (Horrocks' splitting criterion)

If for all twists d € Z and i > 0, H (P", E ® Opx(d)) is equal to
the cohomology of positive sums of line bundles, then E splits.

“If it walks like a duck and talks like a duck, then it's a duck.”

- Computable using Tate resolutions over the exterior algebra.
- Idea: construct the Beilinson monad for E with terms given by:

B =W (P, E Op(—) © O (j).
JEZ

5/20



A Splitting Criterion for P"

Theorem (Horrocks' splitting criterion)

If for all twists d € Z and i > 0, H (P", E ® Opx(d)) is equal to
the cohomology of positive sums of line bundles, then E splits.

“If it walks like a duck and talks like a duck, then it's a duck.”

- Computable using Tate resolutions over the exterior algebra.
- Idea: construct the Beilinson monad for E with terms given by:

B =W (P, E Op(—) © O (j).
JEZ

For which toric varieties can we prove a similar splitting criterion?

5/20




Section 2

Toric Varieties

6/20



Toric Varieties
Let o C N = Z" be a cone h‘k

and 0¥ C M ®z R be its dual cone,

where M = Homz(N, Z). 7

7/20



Toric Varieties
Toric Varieties

Let 0 C N = Z" be a cone h‘k

and 0¥ C M ®z R be its dual cone,
where M = Homz(N, Z). 7 »

Global Coordinates
The gluing data for a toric variety comes from a fan A of cones.

—

7/20



Toric Varieties
Toric Varieties
Let 0 C N = Z" be a cone h‘k

and 0¥ C M ®z R be its dual cone,

where M = Homz(N, Z). 7 »

Global Coordinates
The gluing data for a toric variety comes from a fan A of cones.

Construction: for each o € A we have

7/20



Toric Varieties
Let o C N = Z" be a cone h‘k

and 0¥ C M ®z R be its dual cone,

where M = Homz(N, Z). 7

Global Coordinates
The gluing data for a toric variety comes from a fan A of cones.

Construction: for each o € A we have
- a commutative semi-group S, = 0¥ N M, and

7/20



Toric Varieties
Let o C N = Z" be a cone h‘k

and 0¥ C M ®z R be its dual cone,

where M = Homz(N, Z). 7

Global Coordinates
The gluing data for a toric variety comes from a fan A of cones.

Construction: for each ¢ € A we have
- a commutative semi-group S, = 0¥ N M, and
- an open affine toric subvariety U, = Spec C[S,].

7/20



Toric Varieties
Let o C N = Z" be a cone h‘k

and 0¥ C M ®z R be its dual cone,

where M = Homz(N, Z). 7

Global Coordinates
The gluing data for a toric variety comes from a fan A of cones.

Construction: for each o € A we have

- a commutative semi-group S, = 0¥ N M, and

- an open affine toric subvariety U, = Spec C[S,].
Now glue U, according to the fan.

7/20
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Toric Varieties

Let 0 C N = Z" be a cone
and 0¥ C M ®z R be its dual cone,
where M = Homz(N, Z).

Global Coordinates
The gluing data for a toric variety comes from a fan A of cones.

Construction: for each o € A we have

- a commutative semi-group S, = 0¥ N M, and

- an open affine toric subvariety U, = Spec C[S,].
Now glue U, according to the fan.

Definition

A toric variety is smooth (resp. simplicial) if every cone is generated
by a subset of an Z-basis (resp. R-basis) of N (resp. N ®z R).

- In particular, smooth implies simplicial.
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Toric Varieties
Simplicial Toric Varieties

Let S be the total coordinate ring of a toric variety X.
Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)
Every coherent sheaf on a simplicial toric variety X corresponds
to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!

- Monomial orderings
- Grobner basis algorithms
- Syzygies and free resolutions

Caution: saturation on S is with respect to an irrelevant ideal B.
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If we consider longer monads, we can also represent all sheaves.

- Beilinson monads: By = (DH 7 (P", E ® O(—j)) ® ¥/())
JEZ

- Virtual resolutions: V; = @Hj_i (P", E ® () ® O(—))
JEZ

Proposition (Beilinson 1978)

There exit two full strong exceptional collections for D (IP"):
(9]?!17 O]Pn(].), cey O]Pn(n) and O]Pn, Q]Pn(].), PN Qﬁ’;n(n)

What is the machinery for translating between the monads above?
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Derived Categories
Fourier—Mukai Transforms

Consider the diagram: W)l/X x X\zrz
X X
Let KC be a resolution of the diagonal A = im(X — X x X)

K0+ S5p +— Kp+ Ky« ---

Definition (Huybrechts 2006)
The Fourier—Mukai transform with kernel C is the functor

®x : DP(X) — DP(X),
given by E — m(mE ® K).

- identity functor on DP(X) produces quasi-isomorphisms.
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Applications

Virtual Resolutions for X = P

Let PP=1P™ x --- x IP" be a product of r projective spaces.
Let M =, My be a f.g. Z'-graded module over the Cox ring S.
Fact: coherent sheaves on P? <= f.g. graded modules over S.

Observation

Minimal free resolutions on P2 can be longer than dimension of P2.

Hilbert's Syzygy Theorem on S does not reflect the geometry of P2 !

But a virtual Hilbert Syzygy Theorem for P2 still holds:
Theorem (Berkesch, Erman, and Smith 2020)

A virtual resolution of length < dimIP" exists for graded modules.
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Applications

Beilinson’s Resolution of Diagonal for X = IP"

Roadmap for constructing a short virtual resolution on X = P%:

@ compute a Koszul resolution of the diagonal in X x X given by

Ko = /\ ((’)X(—e,-)@Q)e("(e;)) — _>OX><X —>OA —0
|ei|=k

@ find d € Pic(X) so QY(u+ d) ® .# has no higher cohomology;
@ apply the Fourie—Mukai functor with kernel K on M(d);

@ apply the global sections functor on the resulting complex.

Problem

What conditions on the exceptional collections of a toric variety
guarantee that a virtual Hilbert Syzygy Theorem holds?

“Variations on the theme of Beilinson’s resolution of the diagonal.”
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Regularity on P” from a Derived Perspective

Let S = Kk[xp,...,xn] and B = (xo, ..., Xp) with deg x; = 1.
Let M = M>m(m) be an O-regular S-module.

Let Fo be the minimal free resolution of M,
and G, be the virtual resolution of M as in BES20.

- The (a,j)-th Betti number of F, is given by dim Tor;(M, k).,.
- The (a, j)-th Betti number of G, is given by h*~/ (M ® Q3(a)).

We can improve a result of Eisenbud and Goto:

G F. and (/\71@ Qa(a)> — dim Tor;(M, k),
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Regularity on X and New Results

Let X be a “nice” toric variety, such as:

- a projective space IP”, or product of projective spaces P%
- a Hirzebruch surface IF,;

- the del Pezzo surface dP6.

There is a “Beilinson-type"” resolution of the diagonal K for X.

Let M = M>m(m) be an “S-regular” S-module.

Let Fo be the minimal free resolution of M,
and G, be the virtual resolution of M constructed via ®x.

Ge = F, and hl?~ (/\7@ Q"’(a)) = dim Tor;(M, k),
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Applications

Regularity and Linear Resolutions for X = IP”

Let S = Kk[xp,...,Xn] and m = (xp, ..., Xx,) with degx; = 1.
Let M =, My be a f.g. Z-graded S-module.

Proposition (Eisenbud and Goto 1984)

The following are equivalent to M being m-regular:

@ i-th syzygy of M is generated in degrees < m + i
Q@ Hi(M)yg=0ford>m+1—iandalli=0,1,...

© the truncation M>,, admits a linear free resolution.

Recall that a free resolution Fy of M>,, is linear if:
@ M->,, is generated in one degree only and

@ f, has only linear elements in its differential matrices

Equivalent to the Betti table being concentrated in one line.
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Applications

Multigraded Regularity for X = P2

Let X =P2=P™x --- x P™ be a product of r projective spaces.
Let S = Cox(X) with B the Z'-graded irrelevant ideal of X.
Let M =P, My be a f.g. Z -graded S-module.

Definition (Maclagan and Smith 2004)

An S-module M on a product of projective spaces is m-regular if

H;(M)a=0ford e m+ N[l —i]and all i =0,1,....

Then regM = {m € Z" : M is m-regular}.

Notation:

N1 -] = U{]N’ shifted northwest by 1 — i steps}.

19/20



Applications

Multigraded Regularity for X = P! x P?

Definition (Maclagan and Smith 2004)
mcregM <= HL(M)q =0 ford € m+N2?[1—i]andalli>0.

Notation: IN?[1 — i] = [ J{IN? shifted northwest by 1 — i steps}.

Example for Picard rank = 2

i

- Implemented in the M2 package VirtualResolutions using Tate resolutions
joint with Ayah Almousa, Juliette Bruce, and Mike Loper.

=0 B H;(M;o ’H;(M):O

R
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