The Twisted Cubic
Let’s first define the coordinate ring of $ \P^3 $, where the twisted cubic lies:
Parametric Curve
This methods yields the twisted cubic as the ideal of a projective curve given parametrically by the map: \[ \begin{aligned} k[x,y,z] &\to k[t] \cr x &\mapsto t^3 \cr y &\mapsto t^2 \cr z &\mapsto t. \end{aligned} \]
Determinantal Ideal
This method defines the twisted cubic as a determinantal ideal of $2\times 2$ minors, that is: \[ I = I_2 \begin{pmatrix} x & y & z \cr y & z & w \end{pmatrix} \]
Veronese Embedding
This method defines the twisted cubic as the kernel of the Veronese embedding of degree three on the projective line. That is:
Resolution and Betti Table
A minimal free resolution of the ideal defining the twisted cubic: \[ 0 \gets \mathcal O_C \gets \mathcal O_{\P^3} \gets 3\mathcal O_{\P^3}(-2) \gets 2\mathcal O_{\P^3}(-3) \gets 0 \]